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Abstract
Aim: Agriculture is one of the greatest pressures on biodiversity. Regional studies have 
shown that the presence of natural habitat and landscape heterogeneity are benefi-
cial for biodiversity in agriculture, but it remains unclear whether their importance 
varies geographically. Here, we use local biodiversity data to determine which local 
and landscape variables are most associated with biodiversity patterns and whether 
their association varies between tropical and non-tropical regions.
Location: Global terrestrial area in forest biomes.
Major taxa studied: More than 21,000 species of vertebrates, invertebrates, plants 
and other taxa.
Methods: We used generalized linear mixed-effects models to analyse the relation-
ships between either community total abundance or species richness (derived from 
the PREDICTS database) and a number of site-level (predominant land use and land-
use intensity) and landscape-level variables (distance to forest, the percentage of 
natural habitat in the surrounding landscape, landscape homogeneity, the number of 
land-cover types in the landscape, and total fertilizer application). We compared the 
associations of these variables with biodiversity in tropical and non-tropical regions.
Results: In most cases, changes in biodiversity associated with landscape-level vari-
ables were greater than those associated with local land use and land-use intensity. 
Increased natural habitat availability was associated with the most consistent in-
creases in biodiversity. Landscape homogeneity was also important but showed dif-
ferent directions of biodiversity change between regions. Associations with fertilizer 
application or the number of land-cover types were generally weaker, although still of 
greater magnitude than for the local land-use measures.
Main conclusions: Our results highlight similarities and differences in the associa-
tion of local- and landscape-scale variables with local biodiversity in tropical and 
non-tropical regions. Landscape natural habitat availability had a consistent positive 
association with biodiversity, highlighting the key role of landscape management in 
the maintenance of biodiversity in croplands. Landscape-scale variables were almost 
always associated with greater changes in biodiversity than the local-scale measures.
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1  |  INTRODUC TION

With the global human population continuing to rise, there is a need 
to determine how to produce sufficient food while also conserving 
biodiversity. To meet the increasing demand for food, it is likely that 
further expansion and intensification of agricultural systems will be 
necessary, with resulting negative impacts on biodiversity (Kehoe 
et al.,  2017). Agriculture is a major driver of biodiversity change; 
therefore, considering how to address the problem of feeding the 
global population while limiting the negative impacts of food pro-
duction is key (Mehrabi et al., 2018). Indeed, land-use change, par-
ticularly conversion of land for agriculture, is already a major threat 
to biodiversity (Maxwell et al., 2016). The richness and abundance 
of species are significantly reduced and the composition of commu-
nities is altered in croplands relative to areas of primary vegetation 
(Newbold et al., 2015, 2016). Maintaining biodiversity within agricul-
tural systems is not only desirable for conservation, but also neces-
sary for the functioning and resilience of agro-ecosystems, because 
it underpins the provision of many essential ecosystem services 
(Millennium Ecosystem Assessment,  2005), including pollination, 
pest control and nutrient cycling.

The establishment of the factors that influence biodiversity 
within croplands has enabled some farming systems to be developed 
with conservation and sustainability in mind (Garibaldi et al., 2017). 
Characteristics of the landscape, such as composition and configura-
tion, have an important role in shaping biodiversity patterns at both 
local and landscape scales (Tscharntke et al., 2012). Characteristics 
identified as important for cropland biodiversity include the avail-
ability and proximity of natural or semi-natural habitat (Carvalheiro 
et al.,  2010; Dainese et al.,  2015; Garibaldi et al.,  2011; Kohler 
et al.,  2007; Öckinger & Smith,  2007; Plath et al.,  2021; Ricketts 
et al., 2008). Nearby natural habitats can provide additional or al-
ternative resources to local biodiversity or act as a source of bio-
diversity itself (Tscharntke et al.,  2005). Likewise, the biophysical 
characteristics of agricultural systems themselves have important 
effects on biodiversity. In addition to biodiversity declines with the 
conversion of natural habitats to croplands, inputs such as fertilizer 
(Kleijn et al., 2009) and pesticides (Geiger et al., 2010) can also re-
sult in negative impacts on biodiversity, as can increasing field size 
(Ricciardi et al., 2021).

Although the effects of certain landscape characteristics (such as 
landscape composition) on biodiversity have been assessed at local 
and regional scales, and on specific taxa (e.g., (Garibaldi et al., 2011; 
Martin et al., 2019; Redlich, Martin, & Steffan-Dewenter, 2018), to 
our knowledge there has been no global assessment of the relative 
importance of both local and landscape variables on biodiversity 
(although for an assessment of habitat amount, patch size and iso-
lation effects specifically, see Watling et al., 2020). It is also unlikely 

that biodiversity responses will be the same in both tropical and 
non-tropical regions, given their very different contexts in terms 
of land-use history, wider habitat availability and the composition 
of ecological communities. In non-tropical regions, particularly in 
the Northern Hemisphere, there has been a long history of anthro-
pogenic land use (Ellis et al., 2021), which has substantially altered 
species composition, filtering out sensitive species from communi-
ties (Balmford, 1996). Indeed, species at low latitudes have shown 
greater sensitivity to disturbance compared with those at higher 
latitudes (Betts et al., 2019). Understanding variation across global 
regions in how landscape composition and complexity affect local 
biodiversity will ensure that the most appropriate conservation 
management responses can be implemented.

Here, we investigate globally the effects of agricultural land-
use intensity and of landscape composition and complexity on local 
biodiversity. We assess the relative importance of these variables 
for biodiversity and establish whether patterns differ between 
tropical and non-tropical regions. To do this, we use biodiversity 
data from the PREDICTS database (Hudson et al.,  2014, 2016, 
2017). This work builds on previous studies using this database, 
which have shown the effects of local land use and land-use inten-
sity on biodiversity (Newbold et al., 2015), and the differences in 
these responses across biomes (Newbold et al., 2020), by assessing 
an additional set of landscape-scale variables. We fit sampled spe-
cies richness and total sampled abundance to site-level land-use 
variables (predominant land use and land-use intensity) and five 
landscape-scale variables (distance to forest, the percentage of 
natural habitat in the surrounding landscape, landscape homoge-
neity, the number of land cover types in the landscape, and total 
fertilizer application). We predict that species richness and abun-
dance will be: (1) negatively associated with landscape-scale vari-
ables reflecting reduced availability of natural resources, such as 
long distance to forest and low percentage of surrounding natural 
habitat; (2) negatively associated with higher application of fertiliz-
ers within the landscape; (3) negatively associated with increasing 
landscape homogeneity, owing to simplification of the landscape; 
and (4) positively associated with the number of land-cover types, 
owing to the presence of additional habitat types that could sup-
port greater biodiversity. We expect that local-scale variables, al-
though coarse in their classification, will be most important to local 
biodiversity, because they will best reflect the environmental con-
ditions experienced by species. Of the landscape-scale variables, 
we expect those associated with natural habitat availability to be 
most important, because nearby natural habitat can provide alter-
native resources for biodiversity. We also predict that differences 
in the tropics will be greater than those in the non-tropics, because 
there is a greater proportion of rare and/or specialist species rela-
tive to the non-tropics.

K E Y W O R D S
biodiversity, cropland, forest, land use, landscape complexity, landscape composition, natural 
habitat, PREDICTS database, sustainability, tropical
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2  |  MATERIAL S AND METHODS

2.1  |  Biodiversity data: The PREDICTS database

The PREDICTS database (Hudson et al., 2014, 2016, 2017) contains 
data from 666 published studies, describing measures of individual 
species abundance (83% of records) or presence/absence (17% of 
records) or, alternatively, overall species richness (<1% of records) 
for assemblages sampled at specific sites, across gradients of land 
use or land-use intensity. The database has a hierarchical structure, 
whereby studies contain data sampled using the same methods, 
from one or more spatial blocks that form distinct spatial clusters, 
each of which contains data from one or more specific sites with 
geographical coordinates (Hudson et al., 2014). Finally, for each site 
there is a list of abundance, presence/absence or richness records 
for individual taxa (Hudson et al., 2014). One of the landscape vari-
ables we were interested in was the effect of nearby natural habi-
tat on biodiversity. Given that the only natural habitat to have been 
mapped globally at a resolution fine enough to answer this question 
adequately is forest, we focused here on data from naturally for-
ested biomes. We used an updated version of the WWF Terrestrial 
Ecoregions of the World map (Olson et al., 2001) to select sites found 
within biomes where the potential natural vegetation is expected to 
be forest. Of the 14 biomes listed, seven constitute forests.

We calculated within-sample species richness as the total count 
of species sampled at each site, and total abundance as the sum of 
recorded abundance measurements (for those records that captured 
some measure of abundance). Some measures required correction for 
sampling effort where effort varied within a study. To do so, sampling 
effort was rescaled within each study such that the most-sampled site 
had an effort value of one, and then raw abundance measurements 
were divided by this relative sampling effort. This correction assumes 
that recorded abundance scales linearly with sampling effort (Newbold 
et al., 2015). It is not possible to include sampling effort directly in the 
models, to account for variation in sampling effort among studies, be-
cause each study measured sampling effort in a different way. Such 
variation in sampling effort should be accounted for, at least in part, by 
including study identity as a random effect. We tested the robustness 
of our species richness results using estimates of species richness that 
accounted for incomplete sampling, using the Chao estimator (Chao 
et al., 2005). Given that we did not always have an integer measure 
of abundance, we could determine Chao-estimated richness for only 
2143 sites in the tropics (out of 3719 in the main analysis) and 3706 
sites in the non-tropics (out of 6674 in the main analysis). Although 
the number of sites was reduced considerably, results were generally 
similar to those from the models based on uncorrected species rich-
ness (Supporting Information Appendix S1). In a few cases, significant 
terms became non-significant, which might be attributable, in part, to 
the reduction in the number of sites available.

To compare the influence of landscape characteristics in crop-
land compared with sites of natural vegetation, we selected only 
sites from land uses specified as primary vegetation, secondary 
vegetation and cropland that were present within naturally forested 

biomes, and for which data on all landscape characteristics were 
available (see next section). The remaining sites were then split into 
tropical and non-tropical sites by latitude: sites between −23.44 and 
23.44° of latitude (the Tropics of Capricorn and Cancer) were classi-
fied as tropical sites and those outside of this region as non-tropical. 
This resulted in two data subsets: the tropical subset, which con-
tained species richness estimates from 3719 sites across 224 studies 
and abundance estimates from 3314 sites across 202 studies; and 
the non-tropical subset, which contained species richness estimates 
from 6674 sites across 257 studies and abundance estimates from 
5740 sites across 228 studies. These sites were distributed in a 
relatively even manner across forest biomes, although fewer sites 
were available from tropical coniferous, tropical dry broadleaf and 
temperate conifer forest systems (Figure 1; Supporting Information 
Table S6.1). The datasets include biodiversity estimates for >21,000 
species of vertebrates, invertebrates, plants and other taxa (for a 
breakdown, see Supporting Information Table S6.1).

2.2  |  Site-level data

Site-level information on land use and a coarse classification of land-
use intensity are available within the PREDICTS database. Selected 
land uses were “cropland” (areas used for growing herbaceous 
crops), “primary vegetation” (natural habitat with no record of past 
vegetation destruction) and “secondary vegetation” (areas where 
the natural habitat is known to have been destroyed by human ac-
tions or extreme natural events but is now recovering). Land-use 
intensity within the database is specified as one of three classes: 
“minimal use”, “light use” or “intense use”. Sites where there was in-
sufficient information to classify land-use intensity (n = 1403) were 
removed from our analysis. The criteria used to classify intensity 
varied among land-use types and was based on information given 
within the source papers. For primary and secondary vegetation, 
this is classified by the level and spatial extent of human impact (for 
example, hunting or selective logging), and for cropland it is based on 
cropping approach (mixed or monoculture), tillage, mechanization, ir-
rigation and the application of chemical inputs (Hudson et al., 2014).

2.3  |  Landscape-level data: Agricultural land-
use intensity

Landscape-scale data on agricultural land-use intensity were ex-
tracted from datasets available from EarthStat (www.earth​stat.
org). These datasets represent global, gridded maps at a 5 arcmin × 5 
arcmin resolution (c. 10 km × 10 km at the Equator) describing total 
production, yield, fertilizer application (total and per hectare) and 
area harvested (fractional area and hectares) averaged over the pe-
riod 1997–2003 (Monfreda et al., 2008; Mueller et al., 2012; West 
et al., 2014). The area harvested and production data cover 175 crop 
types (Monfreda et al., 2008), and the fertilizer data cover 17 major 
crops (Mueller et al., 2012; West et al., 2014). Values were summed 

http://www.earthstat.org
http://www.earthstat.org
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across all crops within a grid cell (either 175 or 17) to obtain a total 
value across all crop types for each variable. Estimates of production 
and fertilizer application were divided by the area harvested to deter-
mine per-hectare estimates. For each of the variables, we overlaid the 
PREDICTS sites onto each aggregated map and extracted values using 
the extract function from the raster R package v.2.8-4 (Hijmans, 2018).

Although the EarthStat data might be inaccurate at the grid-cell 
level (Mueller et al., 2012), they offer the best available quantitative 
estimates of global agricultural intensity. Given that we are inter-
ested in spatial differences in use intensity, and not in absolute val-
ues, these data should be a suitable proxy for relative agricultural 
use intensity in terms of crop production and fertilizer application 
across the globe. More information on the EarthStat datasets can be 
found in the Supporting Information (Appendix S2).

2.4  |  Landscape-level data: Landscape 
composition and complexity

Data on landscape composition and complexity included informa-
tion on the distance of each site to forest, the percentage of natural 
habitat in the surrounding landscape, a measure of the homogeneity 
of the surrounding landscape, and the number of land-cover types in 
the surrounding landscape.

To estimate distance to forest, we used data from Global Forest 
Watch (https://www.globa​lfore​stwat​ch.org/) on tree cover density 
(Hansen et al., 2013) and calculated the distance of each site from 
any 30 m × 30 m cell with forest of ≥80% density, assuming that such 
dense forest represents mature natural forest that might harbour 
source populations of species or offer resources to biodiversity in 
nearby areas. In contrast to the biomes map, which was used to filter 

sites found with areas where the natural vegetation is expected to 
be forest, the Global Forest Watch map represents contemporary 
actual forest distribution. We first processed the Global Forest 
Watch dataset such that cells were either one (forest of ≥80% den-
sity) or zero (forest of <80% density or not forest). We then deter-
mined the distance (in kilometres) from each site to the nearest cell 
containing ≥80% dense forest using the pointDistance function from 
the raster R package (Hijmans, 2018).

We estimated the percentage of natural habitat in the landscape 
using downscaled land-use data (Hoskins et al.,  2016). This dataset 
consists of estimates of the proportional cover of five major land-use 
classes (primary habitat, secondary habitat, cropland, pasture and 
urban) at 30 arc-s resolution (c. 1 km at the Equator) for all global terres-
trial areas. This dataset was created by downscaling data detailing 61 
bio-realms using the relationships between these bio-realms and fine-
grained data on climate, land cover, landform and anthropogenic layers 
determined using statistical models (Hoskins et al., 2016). We projected 
the maps of primary and secondary vegetation onto a Behrmann equal-
area projection at 1 km resolution and summed the values in these two 
maps to obtain estimates of the proportional cover of natural habitat. 
The data were then aggregated to 5 km × 5 km blocks, calculating the 
average percentage cover across the block. Finally, we overlaid our 
sites onto this map and extracted values as above to obtain estimates 
of the percentage of surrounding natural habitat for each site.

The number of land-cover types surrounding each site was de-
termined using the global land-system classification by Kehoe 
et al. (2017), which is a map characterizing broad land-cover catego-
ries at 30 arc-s resolution (c. 1 km at the Equator). For our purposes, 
we ignored the classifications based on suitability for crops and/or 
livestock and combined land-use categories with the same broad 
land-cover type (e.g., Dense_forest and Dense_forest_CropSuitable); 

F I G U R E  1  Global spread of the 
PREDICTS studies from naturally forested 
areas used in this analysis. The size of 
points represents the number of sites per 
study. Coloured regions correspond to the 
forest biomes, from the WWF terrestrial 
ecoregions of the world map (Olson et al., 
2001). Dashed lines show −23.44 and 
23.44° latitude; sites within this region 
are classified as tropical sites and those 
outside of this region as non-tropical sites.
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this left 12 land-cover types. We determined the number of surround-
ing land covers for each site by creating a 5 km buffer, within which 
we summed the number of land covers. This was carried out using 
the buffer and extract functions, respectively, in the raster R package 
(Hijmans, 2018). Initially, a selection of buffer zones was tested across 
a range of distances often considered in landscape studies (radius of 
100 m, 500 m, 1 km, 3 km and 5 km). We chose to use the 5 km buffer 
in the final analysis because it is an important landscape size in other 
studies (Crouzeilles & Curran, 2016; Potts et al., 2010) and for consis-
tency with the other metrics used here. Smaller buffer sizes did not 
have a good range of values across possible numbers of land covers 
owing to the resolution of the land-cover dataset.

Our measure of landscape homogeneity was taken from the 
study by Tuanmu and Jetz (2015). We used the “homogeneity” met-
ric which, using the MODIS enhanced vegetation index (EVI) product 
(a vegetation index derived from satellite images that measure the 
reflectance in the red, near-infrared and blue wavebands), describes 
vegetation similarity between adjacent pixels. This metric ranges 
between zero and one, with one representing homogeneous areas. 
We used the 2.5 arcmin resolution homogeneity map (c. 5 km at the 
Equator) and for each PREDICTS site extracted the homogeneity 
value associated with its location, as above. We would expect a neg-
ative relationship between homogeneity and the number of land-
cover metrics, which was the case (Supporting Information Figure 
S5.1). However, we do not expect this correlation to be problematic 
because the correlation was relatively weak (r  =  −0.35), and each 
variable measures a different characteristic of the environment. We 
sought alternative metrics of homogeneity that account for whether 
the landscape is natural or modified, which this dataset does not, 
but did not find anything suitable. Maps of landscape-level variables 
can be found in the Supporting Information (Figures S5.2 and S5.3), 
along with dataset details (Supporting Information Table S6.2).

2.5  |  Statistical analysis

All statistical analyses were conducted in R v.3.6.2 (R Core 
Team,  2016). To avoid overly complex models with high-order in-
teraction terms, analyses were conducted separately on tropical 
and non-tropical data subsets. Initially, correlations between all 
landscape-scale variables were tested using the cor function (calcu-
lating Pearson's correlation coefficient). As expected, many of the 
agricultural variables from the EarthStat data were highly correlated 
(Supporting Information Figure S5.4). We therefore used only the 
“total fertiliser application” variable in our final analyses. We selected 
this variable because the application of chemical inputs is an impor-
tant aspect of agricultural intensification. This left five landscape-
scale variables for analysis: total fertilizer application, distance to 
forest, percentage of natural habitat, homogeneity of the surround-
ing landscape and the number of land covers in the surrounding land-
scape; the two site-specific categorical variables: predominant land 
use and use intensity; and the forest biome in which the site was 
located (Table 1; Supporting Information Figure S5.5).

Each measure of biodiversity (species richness and total abun-
dance) was modelled separately for each realm as a function of the 
final set of variables using mixed-effects models. For all models, 
a random effect of study identity was included to account for dif-
ferences in sampling methods between studies and differences in 
overall abundance and richness between broad taxonomic groups 
and geographical regions, and also a nested random effect of spa-
tial block within study to account for the spatial arrangement of 
sites (Newbold et al., 2015). For the species richness model, site 
was also included as a random effect (nested within spatial block, 
nested within study) to account for overdispersion (Newbold 
et al., 2015; Rigby et al., 2008). To account further for differences 
in abundance and richness between taxonomic groups, we tested 
the inclusion of a random effect of study identity nested within 
major taxonomic group (birds, mammals, amphibians, reptiles, in-
vertebrates, fungi and slime moulds, and plants). These models 
had slightly improved Akaike information criterion values com-
pared with the main models and produced very similar results 
to models without this random effect. However, the modelling 
algorithm produced convergence warnings, hence they were not 
taken further.

Interactions between each of the continuous variables and both 
predominant land use and use intensity were included, because we 
expect effects of landscape-scale variables to vary across different 
types and intensities of land use. An interaction between predomi-
nant land use and use intensity was also included. The distance to for-
est and total fertilizer application estimates were skewed, and were 
therefore ln-transformed before analysis (adding a value of one to 
deal with zeroes), as were the abundance estimates. Analyses were 
also tested using an inverse hyperbolic sine transformation for the 
fertilizer and distance to forest data [this transformation allows the 
retention of zero-value observations (Bellemare & Wichman, 2020)]. 
The results were unchanged, hence they are not presented. All 
landscape-scale variables were rescaled to have a mean of zero 
and standard deviation of one. The best fixed-effects structure 
was determined by backward stepwise model selection, conducting 
likelihood-ratio tests (χ2) to select variables (Supporting Information 
Tables S6.3 and S6.4). Species richness was modelled using a gen-
eralized linear mixed-effects model, assuming Poisson-distributed 
errors. We modelled ln-transformed total abundance (adding one 
to handle zero values) using a linear mixed-effects model, assum-
ing normally distributed errors. We used this approach because the 
PREDICTS database contains many abundance estimates that are 
not true counts (e.g., relative densities, percentage cover of plants), 
hence assuming a Poisson or similar count distribution is suboptimal. 
Previous studies using the PREDICTS database have shown that al-
ternative distributions (such as the zero-inflated negative-binomial 
distribution) give very similar results to the log-normal distribution 
used here (Millard et al., 2021). The final model structures are pre-
sented in the Supporting Information (Appendix S3). Models were 
run in R using the lme4 package v.1.1-21 (Bates et al., 2015). Checks 
were carried out to ensure that model assumptions were met and 
to check for spatial autocorrelation in the residuals (Supporting 
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Information Figures S5.6-S5.9). Model output tables are presented 
in the Suppporting Information (Appendix S4).

To compare the relative magnitudes of change in biodiversity with 
variation in all variables, we predicted the percentage difference in 
both total abundance and species richness across the range of each 
of the explanatory variables at the sites included in the analyses. All 
other variables were held constant, at median values for continuous 
predictors, and for cropland and intense use for land use and use 
intensity, respectively. Depending on the realm of interest, the for-
est biome was set to either “Tropical & Subtropical Moist Broadleaf 
Forests” or “Temperate Broadleaf & Mixed Forests”. Predictions of 
abundance and species richness were generated by sampling 10,000 
estimates based on the variance–covariance matrix. The percent-
age difference between the extremes of each explanatory variable 
was calculated for each random sample and summarized in terms of 
the median and 95% confidence intervals (not prediction intervals). 
These results are presented in the Supporting Information (Table 
S6.5) and Figure 3. Note that not all of the effects shown in Figure 3 

were significant alone but are included in the figure if they showed a 
significant interaction with land use or use intensity. The percentage 
changes in biodiversity as a result of these significant interactions 
are presented in Figures 4 and 5.

3  |  RESULTS

The relative importance of the local and landscape variables as-
sessed differed depending on the realm and the biodiversity met-
ric considered. Nevertheless, in almost all cases, landscape-scale 
variables were associated with stronger variation in total abundance 
and species richness than local-scale land use and land-use inten-
sity (Supporting Information Table S6.5). Despite generally having 
a smaller effect on biodiversity, the main effects of local-scale land 
use and land use intensity, and the interaction between these vari-
ables, were often associated with substantial changes in total abun-
dance and species richness (Figure 2; Supporting Information Tables 

F I G U R E  2  Difference in (a) total abundance and (b) species richness associated with the interaction between land use and use intensity. 
The percentage change of each biodiversity variable was determined by sampling the fixed effects 1000 times based on the variance–
covariance matrix, then calculating the median value (points) and the 2.5th and 97.5th percentiles (error bars). Values are expressed as a 
percentage of the value in primary vegetation with minimal use intensity. Main effect of land use: tropical abundance, �2

2,14
 = 1, p = .594; 

non-tropical abundance, �2

2,18
 = 44, p < .001; tropical richness, �2

2,12
 = 77, p < .001; and non-tropical richness, �2

2,18
 = 67, p < .001. Main effect 

of use intensity: tropical abundance, �2

2,9
 = 75, p < .001; non-tropical abundance, �2

2,18
 = 25, p < .001; tropical richness, �2

2,12
 = 38, p < .001; and 

non-tropical richness, �2

2,18
 = 13, p < .01. Interaction between land use and use intensity: tropical abundance, �2

4,33
 = 6, p = .171; non-tropical 

abundance, �2

4,25
 = 80, p < .001; tropical richness, �2

4,33
 = 4, p = .360; and non-tropical richness, �2

4,29
 = 114, p < .001.

(a)

(b)
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S6.3 and S6.4). This is particularly evident in tropical croplands, 
where species richness was reduced by 33% in the most intensively 
used areas.

Local intensification of cropland (comparing minimal-use and 
intense-use cropland) was associated with a reduction in both rich-
ness and abundance of c. 20% in both tropical and non-tropical sites 
(Figure 3; Supporting Information Table S6.5). Differences between 
intensively used primary vegetation and intensively used cropland 
were non-significant, except for species richness in the tropics, 
where richness was almost 26% lower in intensively used crop-
land compared with intensively used primary vegetation (Figure 3; 
Supporting Information Table S6.5).

Of the landscape-scale variables, distance to forest and per-
centage of natural habitat had the most consistent associations with 
biodiversity, although their relative importance varied among biodi-
versity metrics and regions (Figure 3; Supporting Information Table 
S6.5; Figures S5.10 and S5.11). An increased percentage of natural 
habitat in the surrounding landscape was consistently associated 
with increases in both species richness and total abundance of be-
tween 47 and 158% across a range of 1–99% natural habitat avail-
ability, although not significantly so in all cases (Figure 3; Supporting 
Information Table S6.5; main effect of percentage of natural habi-
tat: tropical abundance, �2

1,12
 = 0.3, p = .58; non-tropical abundance, 

�
2

1,18
 = 75, p < .001; tropical richness, �2

1,13
 = 2, p =  .193; and non-

tropical richness, �2

1,18
 = 60, p < .001). The significant interactions 

between the percentage of natural habitat and both land use and use 
intensity for species richness in the tropics showed that the positive 
association with natural habitat was observed primarily in cropland 
sites (Figure 4; interaction between land use and percentage natural 

habitat: �2

2,25
 = 8, p < .05) and in intensively used land (Figure 5; inter-

action between use intensity and percentage natural habitat, �2

2,25
 

= 6, p < .05). Likewise, at the greatest sampled distances from forest 
(325 km), total abundance in tropical croplands was reduced by 86% 
and non-tropical richness by 42% in comparison to sites adjacent to 
forest (Figure 3; Supporting Information Table S6.5; main effect of 
distance to forest: tropical abundance, �2

1,10
 = 3, p = .07; non-tropical 

abundance, �2

1,19
 = 3, p =  .07; tropical richness, �2

1,15
 = 0.4, p =  .55; 

and non-tropical richness, �2

1,18
 = 25, p < .001). Although distance 

to forest had a marginally non-significant association with tropical 
abundance on its own, a significant interaction with land use showed 
that reductions in abundance with increasing distance to forest were 
primarily observed in croplands (Figure 4; interaction between land 
use and distance to forest: �2

2,19
 = 18, p < .001).

For tropical sites, landscape homogeneity had the strongest as-
sociation with species richness and second-strongest association 
with total abundance (Supporting Information Table S6.5; main ef-
fect of homogeneity: tropical abundance, �2

1,9
 = 14, p < .001; and 

tropical richness, �2

1,12
 = 17, p < .001). Abundance was 80% higher 

and richness 157% higher at the most homogeneous sites compared 
with the least homogeneous sites (Figure 3). For species richness in 
the tropics, a significant interaction with land use revealed a stronger 
positive association in croplands than in natural habitats (Figure 4; 
Supporting Information Figure S5.12; interaction between land use 
and homogeneity: tropical richness, �2

2,25
 = 11, p < .05). Conversely, 

for non-tropical sites, landscape homogeneity was less important 
and, in contrast to tropical sites, was associated with reductions in 
both abundance and richness (although the confidence intervals for 
richness crossed zero; Figure 3; Supporting Information Table S6.5; 

F I G U R E  3  Percentage difference in model-estimated total abundance (left) and species richness (right) associated with variation in 
each of the local- and landscape-scale variables in tropical and non-tropical sites. Differences are shown for the range of values of each 
explanatory variable across the sites included in the analysis. Blank cells indicate that the fixed effect (either alone or in interaction with land 
use or use intensity) was not selected as significant in the model-selection process (for final model structures, see Supporting Information 
Appendix S3). Non-focal explanatory variables were held constant: predominant land use was set to “cropland”; use intensity was set to 
“intense use”; and all continuous variables were set to the median value across sampled sites. Predicted biodiversity values were obtained 
by randomly drawing 10,000 estimates based on the variance–covariance matrix. We present median values as points, with error bars 
representing the 95% confidence intervals of the model-estimated mean biodiversity difference (i.e., not prediction intervals). Asterisks 
indicate effects where the confidence intervals do not cross zero. Note that significance in this sense can differ from significance inferred by 
backward stepwise model selection, as presented in the text.
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main effect of homogeneity: non-tropical abundance, �2

1,18
 = 26, 

p < .001; and non-tropical richness, �2

1,18
 = 18, p < .001).

Fertilizer also showed a clear association with biodiversity in 
most cases (main effect of fertilizer application: tropical abun-
dance, �2

1,11
 = 0.6, p  =  .45; non-tropical abundance, �2

1,18
 = 7, 

p < .01; tropical richness, �2

1,12
 = 7, p < .05; and non-tropical rich-

ness, �2

1,18
 = 5, p < .05). Non-tropical abundance and richness 

were 52% and 25% lower, respectively, in sites with the highest in 
comparison to the lowest rates of fertilizer application. However, 
there was a positive difference in tropical richness (an increase 
of 58% at the highest compared with lowest fertilizer application 
rates; Figure 3). Changes in biodiversity, however, were seen only 
across very low levels of fertilizer application, and only for cer-
tain land uses or land-use intensities, with biodiversity remaining 
largely stable at higher rates of fertilizer application (Supporting 
Information Figure S5.13). A significant interaction with use 

intensity revealed that in the non-tropical realm, reductions in 
abundance and species richness were associated with intensively 
used land (Figure 5; interaction between use intensity and fertil-
izer application: non-tropical abundance, �2

2,25
 = 20, p < .001; and 

non-tropical richness, �2

2,29
 = 14, p < .01).

The association between the number of land covers and bio-
diversity varied in importance depending on the biodiversity 
metric and realm in question, but was in no case the variable 
most strongly associated with biodiversity differences (Figure 3; 
Supporting Information Table S6.5; main effect of number of land 
covers: tropical abundance, �2

1,15
 = 0.2, p = .67; non-tropical abun-

dance, �2

1,18
 = 10, p < .01; tropical richness, �2

1,14
 = 0.3, p = .56; and 

non-tropical richness, �2

1,19
 = 2, p =  .19). No difference was seen 

for tropical species richness, but reductions of 28% in non-tropical 
abundance were seen in landscapes with the most compared with 
the fewest land covers (Figure  3; Supporting Information Table 
S6.5). A significant interaction with use intensity for tropical abun-
dance and richness revealed some differences in responses across 
sites of varying use intensity (Figure  5; Supporting Information 
Figure S5.14; interaction between use intensity and number of 
land covers: tropical abundance, �2

2,19
 = 12, p < .05; and tropical 

richness, �2

2,25
 = 10, p < .01).

The variation explained by the fixed effects in the models was 
low (Table 2). However, such low pseudo-R2 values associated with 
fixed effects are similar to or better than previous analyses based 
on the PREDICTS database (Newbold et al.,  2015, 2020) and on 
similar heterogeneous biodiversity databases (Spooner et al., 2018; 
Williams et al., 2022), where the majority of the variation is often 
explained by the random effects.

4  |  DISCUSSION

Overall, landscape-scale measures of land-use intensity are consist-
ently associated with stronger variation in biodiversity than local 
land use and use intensity, although the latter still emerge as impor-
tant correlates of biodiversity patterns. As in previous local and re-
gional studies (e.g., Garibaldi et al., 2011; Martin et al., 2019; Redlich, 
Martin, & Steffan-Dewenter, 2018), we show that landscape charac-
teristics play a key role in shaping local biodiversity, although their 
effects differ in magnitude and even direction between the tropical 
and non-tropical realms.

The availability of natural habitat (distance to dense forest and 
proportion of natural habitat in the surrounding landscape) was al-
most always the strongest correlate of biodiversity differences. The 
importance of natural habitat for maintaining biodiversity is well 
known at smaller scales (Carvalheiro et al., 2010; Kohler et al., 2007; 
Öckinger & Smith,  2007; Plath et al.,  2021); however, its relative 
importance in comparison to other variables at the global scale has 
not been shown before. This finding highlights the biodiversity ben-
efits of land-management strategies that integrate natural habitat 
within agricultural landscapes, such as agroforestry and certain el-
ements of sustainable intensification (Garnett et al., 2013; Torralba 

F I G U R E  4  Percentage difference in model-estimated total 
abundance (shaded area) and species richness associated with 
variation in each landscape-scale variable in interaction with land 
use in tropical and non-tropical sites. Differences are shown for 
the range of values of each explanatory variable across the sites 
included in the analysis. Blank cells indicate that the interaction 
with land use was not selected as significant in the model-selection 
process (for final model structures, see Supporting Information 
Appendix S3). The only non-tropical results are shown in blue 
(homogeneity), and the only total abundance results are shaded 
(distance to forest). Non-focal explanatory variables were held 
constant: use intensity was set to “intense use”; and all continuous 
variables were set to the median value across sampled sites. 
Predicted biodiversity values were obtained by drawing 10,000 
estimates at random based on the variance–covariance matrix. 
We present median values as points, while error bars represent 
the 95% confidence intervals of the model-estimated mean 
biodiversity difference (not prediction intervals). Asterisks indicate 
effects where the confidence intervals do not cross zero. Note that 
significance in this sense can differ from significance inferred by 
backward stepwise model selection, as presented in the text.
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F I G U R E  5  Percentage difference in model-estimated total abundance (left) and species richness (right) associated with variation in 
each of the landscape-scale variables in interaction with use intensity in (a) tropical and (b) non-tropical sites. Differences are shown for 
the range of values of each explanatory variable across the sites included in the analysis. Blank cells indicate that the interaction with use 
intensity was not selected as significant in the model-selection process (for final model structures, see Supporting Information Appendix 
S3). Non-focal explanatory variables were held constant: land use was set to “cropland”; and all continuous variables were set to the median 
value across sampled sites. Predicted biodiversity values were obtained by drawing 10,000 estimates at random based on the variance–
covariance matrix. We present median values as points, while error bars represent the 95% confidence intervals of the model-estimated 
mean biodiversity difference (not prediction intervals). Asterisks indicate effects where the confidence intervals do not cross zero. Note that 
significance in this sense can differ from significance inferred by backward stepwise model selection, as presented in the text.

(a)

(b)

Biodiversity metric 
and realm Conditional R2 Marginal R2

Proportion of residual variance 
explained by fixed effects

Species richness, 
tropical

0.62 0.01 0.03

Species richness, 
non-tropical

0.65 0.03 0.08

Total abundance, 
tropical

0.90 0.01 0.10

Total abundance, 
non-tropical

0.92 0.05 0.39

Notes: Shown here are the conditional and marginal pseudo-R2 values, calculated according 
to the methods of Nakagawa and Schielzeth (2013), and the percentage of residual 
variance unexplained by the random effects that is explained by the fixed effects [i.e., 
marginal/1 − (conditional − marginal)]. All values are shown to two decimal places. Marginal R2 
describes the variance explained by fixed effects only, whereas the conditional R2 is the variance 
explained by both fixed and random effects.

TA B L E  2  Variation explained by 
biodiversity models
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et al., 2016). Distance to forest showed somewhat weaker effects in 
non-tropical regions, possibly because grasslands rather than forest 
are often more diverse in this region (Feurdean et al., 2018).

Homogeneity was also an important variable, and its relationship 
with biodiversity metrics differed between realms, with a positive 
relationship in the tropics and a negative relationship in the non-
tropics. This difference might reflect the difficulty in differentiating, 
using remotely sensed data, between homogeneity of natural habi-
tats, which might be beneficial for biodiversity, versus homogeneity 
of human-dominated land uses, which is more likely to be detrimen-
tal. With non-tropical regions having larger agricultural fields on av-
erage (Lesiv et al., 2019), particularly in the Northern Hemisphere, 
it is possible that increases in homogeneity in these areas reflect an 
increase in homogeneous human-dominated landscapes, whereas 
increases in homogeneity in the tropics are more likely to reflect 
increases in homogeneous natural vegetation. The relationships we 
observe might also reflect differences in the composition of com-
munities between realms. The non-tropics have experienced a long 
history of human land-use conversion and intensification, which 
has resulted in the filtering out of many species that depend on 
natural habitats (Balmford,  1996; Le Provost et al.,  2020; Sullivan 
et al.,  2016). Indeed, generalist species have been shown to re-
spond positively to landscape heterogeneity (Katayama et al., 2014; 
Redlich, Martin, Wende, et al., 2018), and differences in the levels of 
historical disturbance experienced have been shown to affect how 
species respond to habitat fragmentation (Betts et al., 2019).

The number of land-cover types had a generally weaker rela-
tionship with biodiversity, although significant relationships were 
negative. This was surprising, given that land-cover diversity has 
previously been shown to have a positive relationship with biodi-
versity (Redlich, Martin, Wende, et al.,  2018). However, with the 
measure of land-cover diversity we used here, we were unable to 
distinguish between the number of natural land-cover types within 
a landscape, which is likely to be beneficial for biodiversity, and an 
increase in agricultural land cover, leading to a reduction of nearby 
natural habitat, which is likely to have a negative impact. Indeed, six 
of the 12 land-cover types considered represent human-dominated 
areas (Kehoe et al., 2017).

Differences in biodiversity responses between realms and 
across multiple landscape variables are not often considered within 
research. The divergent responses to landscape-scale habitat and 
land management that we show here might help to explain results 
seen in previous studies showing that tropical and Mediterranean 
biodiversity respond more strongly to changes in land use than bio-
diversity in other terrestrial areas (Martins & Pereira, 2017; Newbold 
et al.,  2020) and highlight the importance of investigating differ-
ences between tropical and non-tropical regions.

4.1  |  Scale issues

Fertilizer application had relatively strong associations with 
biodiversity; however, the direction of the association differed 

between tropical and non-tropical regions. Also, differences were 
seen only at very low levels of fertilizer application (Supporting 
Information Figure S5.13). It is important to note that the fertilizer 
estimates used here are at a very coarse spatial scale (c. 100 km2 
grid cells). Biodiversity responses would be likely to differ if fer-
tilizer application was measured at the fine scales at which spe-
cies experience the impacts of chemical pollutants. The fact that 
the thematically coarse but spatially specific measure of land-use 
intensity captured within the PREDICTS database retains a good 
deal of explanatory power could indicate that a broad suite of local 
land-use intensity factors (for many of which there are no global 
maps) are more relevant than landscape-level fertilizer application 
for the measures of biodiversity considered here. There is a clear 
need for fine-resolution but large-extent data on land-use inten-
sity for better integration of this important driver of biodiversity 
change (Dullinger et al., 2021).

This issue of scale might also apply to the other landscape char-
acteristics assessed. It is possible that if alternative spatial scales 
were considered, the observed relationships with biodiversity might 
change. It is also likely that different taxonomic groups respond at 
different spatial scales. For example, birds will be likely to respond to 
changes in landscapes across larger scales than, for example, insects 
(Gonthier et al., 2014). Nevertheless, despite the coarse grain of the 
landscape-scale variables we included in our analysis, biodiversity 
varied more strongly with these variables than with local measures 
of land use or land-use intensity.

4.2  |  Limitations

As a global-scale assessment of biodiversity responses, our study 
inevitably had limitations. First, given that this analysis looks at 
differences in biodiversity across space, we cannot infer how bio-
diversity has changed over time. Second, the biodiversity data in 
the PREDICTS database, as with all biodiversity data, are biased 
in several ways. For example, rare species might be undersampled 
owing to their lower detectability in comparison to more common 
species. This bias will probably be more pronounced in tropical re-
gions, where data are sparser. Third, other factors besides those 
we considered might play important roles in moderating biodiver-
sity, and the inclusion of additional factors will be likely to improve 
the amount of biodiversity variation the models are able to explain. 
Field size and pesticide applications have been shown to be im-
portant in previous small-scale studies (Fahrig et al., 2015; Geiger 
et al., 2010; Ricciardi et al., 2021). At the time of analysis, global 
maps of these factors were not available, but new maps have re-
cently been developed (e.g., Lesiv et al., 2019; Maggi et al., 2019). 
Fourth, the role of natural habitat within the landscape is likely to 
be driven by a complex interaction of the proximity, size and den-
sity of forest patches. For the purposes of this analysis, we used 
one simple measure of proximity to dense forest, including a fixed 
threshold for what was considered “dense”. Likewise, alternative 
natural habitat types, such as semi-natural grassland, are also likely 
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to have a role, as indicated by the importance of natural habitat 
explored here. However, our focus on forest biomes should ensure 
that we are detecting the effect of the main sources of natural 
habitat in this system. Future work should investigate additional 
factors as our understanding and the availability of data improve.

5  |  CONCLUSIONS

The increasing need to expand and intensify cropland systems is 
going to place biodiversity under greater threat as the human popu-
lation continues to increase (Kehoe et al., 2017; Zabel et al., 2019). 
Our results highlight that the availability of natural habitat, in both 
tropical and non-tropical regions, is likely to play an important role in 
maintaining biodiversity within cropland systems. The integration of 
natural habitat into cropland systems should be prioritized in future 
land-use planning, although differences in patterns between tropical 
and non-tropical realms show the need for locally specific measures.
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